

Western Blot 常见问题解析

所有的实验和模型系统都是不同的,因此有时即使按照标准实验方案操作,可能也无法获得预期的结果。我们针对背景高、信号弱或无信号,有杂带等,提出了可能的原因及一些解决方法,希望能有所帮助。

结果	具体问题	原因及解析	解决方案
无信号或条带模糊	蛋白 marker 在内所有 条带都很模糊或者没 有信号	技膜不充分 过度洗膜 洗涤或孵育缓冲 液污染	转膜过程中,用滚轮除去三明治 夹心中的气泡,确保凝胶和膜充 分接触 确保转印三明治以正确的方向放 置在转印设备中 PVDF 膜需预先浸在甲醇中活化, 然后浸到转印缓冲液中 使用可逆染色剂丽春红检测转膜 效果 增加转印时间或电压 缩短洗涤时长或减少洗涤次数 使用新鲜配制的无菌缓冲液
		成像时曝光时间多短	延长曝光时间
	蛋白 marker 条带正常,	样本制备不成功	采集合适的样本,添加蛋白酶抑

样本泳道条带模糊或
没有信号

I	
	制剂,全程在冰上进行
	二抗需和一抗宿主相同,且对应
一抗二抗不匹配	实验应用。如一抗是兔抗,做WB,
	则可选择山羊抗兔-HRP
拉休沙鹿过瓜	增加抗体浓度,延长孵育时间,
抗体浓度过低	如 4℃孵育过夜
	增加上样量,每泳道蛋白上样量
样本中无靶蛋白	不低于 20-30µg
或蛋白含量低	选择表达靶蛋白的样本,浓缩样
	本使信号最大化
	转膜过程中,用滚轮除去三明治
	夹心中的气泡,确保凝胶和膜充
	分接触
	确保转印三明治以正确的方向放
<i>₩</i> п# ~ → /\	置在转印设备中
转膜不充分	PVDF 膜需预先浸在甲醇中活化,
	然后浸到转印缓冲液中
	使用可逆染色剂丽春红检测转膜
	效果
	增加转印时间或电压
	对于分子量大于 100kDa 的蛋白,
	建议在转膜缓冲液中添加终浓度
	为 0.1%的 SDS,将甲醇浓度降至
与膜的结合不充	10%或更低
分	对于分子量小于 20kDa 的蛋白,
	建议用 0.22μm 的 PVDF(NC)膜,
	转膜缓冲液中添加 20%甲醇,不
	加 SDS
抗原被封闭液掩	减少封闭液中的蛋白浓度,尝试
	•

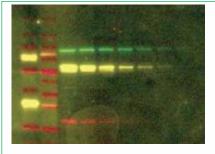
		盖	换一种封闭液
		缓冲液中含叠氮	叠氮化钠会抑制 HRP,避免与
		化钠	HRP 标记抗体一起使用
			增加膜与底物的孵育时间
		化学发光底物的	增加胶片曝光时间
		信号太弱	样品蛋白含量低时,建议使用超
			敏 ECL 发光液
		唯口到承父 亲死	避免同一张膜的多次重复剥离
		膜已剥离并重新	缩短在剥离液中的孵育时间,以
		检测	防止抗原丢失
			跨膜蛋白高温煮沸,蛋白容易交
		広	缠在一起,导致抗原表位无法暴
		跨膜蛋白	露使用,未煮沸的样本,如室温
			孵育 15 分钟
		重组蛋白或表达	使用考马斯亮蓝染色或银染色进
		载体不合格	行验证,或用标签抗体进行检测
		不是全长蛋白,	使用免疫原在这该蛋白序列中的
	重组蛋白或过表裂解	抗体的免疫原不	使用免疫原在这场蛋白疗列中的 抗体
	重组重白或过衣袋 _胖 液,未出现条带	在该蛋白序列	DL144
	似,不由现示巾	免疫原和标签位	重新构建重组蛋白或过表达载
		于同一端,导致	体,不要让免疫原和标签位于同
		标签可能阻碍抗	一端,或者使用免疫原不靠近标
		体的识别	签的抗体
	高背景	抗体浓度过高,	
١.		导致非特异性结	降低一抗或二抗的浓度
	TE 1961 (86)	合	
- 1	3 5		不要在亲和素-生物素系统中使
	366	封闭液选择不当	用牛奶进行封闭。牛奶中含有生
			物素,这会导致背景过高。

		检测磷酸化蛋白时, 避免使用磷
		酸盐缓冲液(如 PBS)和含磷酸
		化蛋白的封闭剂(如牛奶或酪蛋
		白)。可以使用含 BSA 的 Tris 缓
		冲液(如 TBS)封闭。
		使用碱性磷酸酶(AP)标记物时,
		应选择 Tris 缓冲体系(TBS)的
		封闭液,因为磷酸盐缓冲液(PBS)
		会干扰 AP 的活性。
		增加封闭液中的蛋白浓度
		优化封闭时间和温度。在室温
		(RT)下封闭至少 1 小时,或在
		4℃下封闭过夜
	 非特异性位点的	在封闭液中添加 Tween 20 去垢剂
	不充分封闭	 有助于减少背景,但是过多的去
		上 垢剂会干扰抗体结合,通常
		0.05% 的终浓度比较合适
		使用包含 0.05% Tween 20 去垢剂
		的封闭液稀释抗体
		增加漂洗次数和漂洗缓冲液的体
		积
		将 Tween 20 去垢剂添加到洗涤液
	洗涤不充分	中,终浓度为 0.05%。如果
		Tween 20 去垢剂的浓度过高,它
		会从膜上剥离蛋白质
	印迹膜处理不当	
		根据说明书润湿并活化膜
		处理膜时,请始终戴上干净的手
		套并使用镊子
		始终用液体覆盖膜以防止干燥

		所有孵育过程中都要进行震荡
		小心处理膜——损坏膜会引起非
		特异性结合
		在使用之前制备新鲜的缓冲液并
	况友会社业业社	过滤
	设备或材料被污	只能使用干净且无污染的电泳设
	染	备、印迹设备和培养皿
		减少印迹的成像或曝光时间
		换用灵敏度更低的底物
	化学发光底物的	缩短膜与底物的孵育时间。
	信号太强	孵育结束后,完全去除底物
		降低抗体浓度,特别是 HRP 和
		AP 标记二抗的浓度
	二抗发生非特异	添加不含一抗的对照,尝试使用
	结合	预吸附二抗
	印迹膜变干	用缓冲液覆盖膜,防止膜在孵育
	中边族文十	过程中变干
	在一个容器中孵	确保将它们背靠背放置
	育两个或多个膜	M 以
	印迹成像时,曝	尝试缩短曝光时间
	光时间过长	전 MAIN 교육 기타기 다
	膜选择导致的高	硝酸纤维素(NC)膜产生的背景
	背景	比 PVDF 膜低,如果高背景存在,
	ロバ	可考虑使用硝酸纤维素(NC)膜
	裂解方法强度不	使用高强度裂解方法,以增强信
	够	号,减少非特异性条带
非特异条带或多条带	蛋白降解	如果在低分子量处看到多个条
11717777777777777777777777777777777777	五 一 4 川	带,很可能就是这个原因引起的。

—	

	使用新鲜的裂解液,添加蛋白酶		
	抑制剂		
	在高分子量(预期条带分子量的		
	2 倍或 3 倍)处看到额外条带,		
	很可能就是这个原因引起的		
蛋白质形成多聚	如果样本还原不充分,一些蛋白		
体	质会因二硫键的形成而形成二聚		
	体、三聚体或更大的多聚体		
	延长样本在上样缓冲液中的煮沸		
	时间		
	如果在高分子量处出现多条带或		
修饰, 如重度糖	者拖尾,很可能是这个原因引起		
基化	可以尝试样本去糖基化,使用未		
	煮沸的裂解液		
蛋白质存在前	查看文献,了解切割位点的位置。 查看文献,了解切割位点的位置。		
体、剪切体等多	以及包含抗体免疫原序列的片段		
种形式	公汉已日加州九汉 씨/1/111/1/12		
	细胞系频繁传代,逐渐导致其蛋		
细胞系传代次数	白质表达谱出现差异		
过多	使用原始未传代的细胞系,与这		
	些细胞系一起做平行对照实验。。		
	用封闭肽来区分特异性和非特异		
条带为非特异性	性条带。只有特异性条带能被封		
条带	闭掉		
24.18	使用基因敲除裂解液或不表达靶		
	蛋白的样本		
抗体浓度过高	降低抗体浓度,特别是一抗的浓		
	度		
上样量过高	减少上样量		


		减少印迹的成像或曝光时间
	化学发光底物的	更换特异性更好的抗体
	信号太强	缩短膜与底物的孵育时间
		查询文献,看是否存在糖基化、
	翻译后修饰	磷酸化、前体蛋白剪切、泛素化
		等翻译后修饰
タサハマ見てむ		蛋白质本身的电荷影响、转录异
条带分子量不对	蛋白质自身性质	构体的存在、同源和异源聚合体
		和复合体等
	金垣休 至的悬响	如蛋白 marker 不准、电泳影响、
	实现体系的影响	蛋白提取过程中发生降解等
微笑条带		
	电压过高或电泳	降低电压,在冷室或冰浴中进行
	温度过高	电泳
皱眉条带 (某条条带变形)	SDS-PAGE 中有	
	气泡或不溶性颗	配胶中使用无杂质的液体
-	米立	
皱眉条带	凝胶和玻璃挡板	
- 12/14 ATTR	底部有气泡,或	调整装置
	者两边聚合不完	侧定衣 且
	全	
哑铃条带		配制胶有问题,胶凝固后不均一,
	凝胶不均匀	样品中可能含有过多杂质
(M) (M) (m) (m)		重新配制凝胶,确保胶质量无问
		题;样品使用前离心
条带不均匀	凝胶聚合不均匀	检查凝胶配方,确认添加的
24.14 1	1WCWY 2/4 11 1 1 2/4 2/1	TEMED 是否适量

		确保凝胶在凝固时完全被缓冲液 覆盖
条带呈白色(ECL 检测时)	一抗和二抗的浓 度可能过高	抗体浓度过高,底物很快被消耗, 此时吸收的光非常少,导致成像 时出现白色条带
竖条纹	样品中含有不溶 性颗粒	样品充分溶解混匀,必要时离心 去除
条带拖尾	样品溶解不好; 存在蛋白降解; 电泳液反复多次 使用	样品充分溶解混匀后上样;尽量 使用新鲜样本;使用新鲜配制的 电泳缓冲液
条带粘连	上样量太多;分 离胶和浓缩胶之 间有间隙,样品 串孔	减少上样量和提高配胶质量
条带空泡		
=2=	转膜时膜上有气 泡	用滚轮除去气泡,确保凝胶和膜 充分接触
	封闭液未完全溶	封闭液确保充分溶解,封闭结束
背景有不均匀的黑色斑点	解,或抗体在膜	后用 TBST 清洗三遍再加一抗;
	上分布不均	抗体孵育时保持震动

9-4		
蛋白条带分辨率低,泳道有纵向条纹且不直	泳道的蛋白上样 量过高	减少蛋白上样量
样品过粘,样品泳道边缘有 纵向条纹,哑铃型条带,泳 道变宽	样品中盐离子浓 度过高(硫酸铵)	进行透析以降低盐浓度 电泳前,将样品浓缩并重新溶解 于低盐缓冲液中 确保样品中的盐浓度不超过 100 mM
蛋白质聚集导致形状诡异的狭窄泳道	DNA 污染	上样前去除 DNA 以降低粘度
泳道宽度不一致, 泳道变宽	样品中盐离子浓 度过高(氯化	高盐浓度导致电导率增加,从而 影响蛋白质迁移,可能导致蛋白

	納);电泳液中去 垢剂浓度过高 (SDS 或 Triton X-100);RIPA 浓 度高	质条带扩散到包含正常盐浓度样 品的相邻泳道中 透析降低盐浓度,样品浓缩重溶 于低盐缓冲液,确保样品中盐浓 度不超过 100mM; 保持 SDS 与非离子型去垢剂的比 例在 10:1 或更大,减少影响 电泳前稀释样品,降低裂解缓冲 液的终浓度
泳道边缘有阴影	裂解液或样品缓 冲液中的还原剂 过多	SDS-PAGE 中,还原剂 DTT (二 硫苏糖醇)和 TCEP (三 (2-羧基 乙基)膦)的终浓度应小于 50 mM, β-ME (β-巯基乙醇)还原剂的终浓度应小于 2.5%
荧光 WB 非特异和弥散条带	抗体特异性不强 多重检测中的抗	使用在 western blot 中充分验证的抗体 选择远亲物种的一抗 选择预吸附的二抗
	体交叉反应 多重检测时,邻 近通道荧光渗漏	优化一抗和二抗的用量 避免同时使用光谱相近的标记 物,尤其在信号非常强的情况下 确保使用成像仪检测到的荧光染 料 使用仪器上的自动曝光功能确定
信号弱或无信号	抗体特异性不 强,效价低	每个通道上的最佳曝光时间增加一抗浓度,使用新鲜抗体,避免多次重复使用稀释的抗体确保一抗具有理想的滴度,并对

		待检测的抗原有特异性
		对于低丰度样本,增加一抗的用
		量和凝胶上样量
		延长抗体孵育时间,4℃孵育过夜
		使用抗体增强剂
	成像/曝光时间太 短	延长曝光时间
	仪器设置不正确	确保选择了正确的激发和发射光 范围
	去垢剂使用不当	减少或去除去垢剂
	封闭液可阻断抗原	一些封闭液会过度封闭印迹并影
		响抗原与抗体的结合,特别是当
		封闭时间超过1小时后
		用洗涤缓冲液稀释一抗
		尝试其他封闭液
	上样量不足	蛋白上样量过高可能会掩盖靶蛋
		白,降低抗体的识别能力
		蛋白上样量过低会导致抗原不足
		对裂解物进行梯度稀释,以确定
		最合适的蛋白上样量
	 转印效果不佳或	检查转印条件,确认蛋白质已转
	转印后蛋白质丢 失	移
		检测新的靶蛋白时,可能需要重
		新优化转印条件
背景高、不均匀、有斑点	膜污染导致高背景	使用干净的镊子和孵育盒处理膜
		确定适合的封闭液,动物血清或
		脱脂牛奶这类封闭液可能导致交
		叉反应。 左封闭<u>牛</u>藤由阳制土长刻的庙
		在封闭步骤中限制去垢剂的使

_			
		用,常用去垢剂可自发荧光,通	
		常会增加非特异性背景。封闭后,	
		可以使用去垢剂。	
	蛋白 marker 上样		
	量过高,导致假	减少蛋白 marker 上样量	
	信号		
	漂洗或稀释溶液 不合适	使用含有 0.1-0.2% Tween 20 去垢	
		剂的漂洗缓冲液	
		用 0.05%Tween 20 去垢剂制备二	
		抗稀释液	
		增加漂洗的次数或漂洗时间	
-	二抗浓度过高导	优化二抗稀释比	
	致高背景		
	膜干燥导致背景	在所有孵育步骤中,确保液体充	
	斑点或不均匀	分覆盖整个印迹膜,震荡孵育	
	膜选择不当	选择低荧光 PVDF 膜和 NC 膜	
		使用干净的镊子进行处理,避免	
		用手直接接触膜	
		使用干净的孵育托盘或孵育盒-	
	先用甲醇冲洗,再用水冲洗,有		
	印迹膜上有灰尘 或指印	助于溶解并去除残留的染料	
		如果使用湿转方法,需要清洁转	
		印装置和沾满灰尘的耗材,避免	
		产生斑点	
		印迹成像前,用乙醇擦拭成像系	
		统的托盘表面,去除灰尘、棉绒	
		和残留物	